Copper is one of the oldest known conductive materials and is the most common conductive metal besides silver. The application of aluminum in the field of conductivity began in the 1960s. However, the inherent advantages of aluminum have also led to its rapid development in the field of conductivity.
This article provides a comparative analysis of conductive copper busbar and aluminum busbars to help you better understand their respective advantages, so that you can make the most favorable choice for yourself in future projects.
For both products, you can contact us to know more information
The comparison of conductive copper busbar and aluminum busbar
Conductivity and resistance of copper and aluminum
Copper is considered to be the international standard for conductivity, and with changes and improvements in processing technology, commercial pure copper can have 100% or even higher IACS conductivity values. So, the conductivity of copper is beyond doubt in the field of electrical engineering.
Although conductive aluminum is only 62% of copper, it is still another preferred choice for conductive products. This is attributed to the advantage of strong processing ability of aluminum. The conductive aluminum busbar can be cut into different widths or thicknesses according to different scene requirements. A larger cross-sectional area can provide more conductive channels, thereby reducing current density, resistance, and voltage drop. And hollow and extruded profiles have larger surfaces than standard rectangular sections. It can also provide greater heat exchange and more effective heat dissipation while reducing electrical resistivity.
Corrosion resistance of copper and aluminum
Conductive copper busbar has good corrosion resistance and can resist the effects of oxidation and corrosion under various environmental conditions. And copper can resist corrosion caused by most organic chemicals. Even if rusted, verdigris is only a protective surface and does not alter the properties of copper.
Aluminum also has strong anti-corrosion properties, but there are still differences compared to copper. The aluminum surface of the conductive aluminum busbar will form an oxide layer, which can provide certain anti-corrosion protection. However, conductive aluminum busbars may be more susceptible to corrosion in corrosive environments. This requires some surface treatment processes such as electroplating, spraying, etc. to improve the corrosion resistance of aluminum.
Quality and strength of copper and aluminum metals
Copper has high strength and rigidity in metals, and conductive copper busbars can withstand large loads and stresses, making them suitable for applications with high strength requirements.
Conductive aluminum busbars have lower density and lightness compared to conductive copper busbars, and they have advantages in applications with critical weight limitations. High-quality aluminum has sufficient tensile strength to withstand thermal expansion strain. Therefore, in the market environment of automobile lightweight trend, and in scenarios with weight requirements such as aerospace, the application of conductive aluminum busbar is more widespread.
Cost comparison of copper conductive busbar and aluminum conductive busbar
From the perspective of conductivity, conductive copper busbar is undoubtedly still the preferred choice in the field of conductivity, but aluminum also occupies a place in the field of conductivity due to its own advantages.
The cost of aluminum busbar can be significantly lower than that of copper busbar. Its lightweight characteristics can significantly save costs in terms of processing costs. Aluminum also has high recyclability, which makes it less likely to experience market fluctuations or supply shortages.
Environmental protection and sustainability
Although copper and aluminum are both recyclable metals. However, compared to copper (65%), aluminum has a higher recovery rate of 75%. And the energy used for recycling and extracting aluminum is only 15% of the energy required for mining and extracting the same amount of copper.
Ampacity chart of copper and aluminum busbar
Converting Copper to Aluminum using an Ampacity Chart | ||||||||||||
Ampacity Conversion Chart | Copper C110 | 30° C Rise | 50° C Rise | 65° C Rise | Aluminum 6101 | 30° C Rise | 50° C Rise | 65° C Rise | ||||
Flat Bar Size in Inches | Sq. In | Circ Mils Thousands | Weight Per Ft in Lb. | DC Resistance at 20° C, Microhms/Ft | 60 Hz Ampacity Amp* | Weight Per Ft in Lb. | DC Resistance at 20° C, Microhms/Ft | 60 Hz Ampacity Amp** | ||||
1/2*1 | 0.5 | 637 | 1.93 | 16.5 | 620 | 820 | 940 | 0.585 | 31 | 347 | 459 | 526 |
1/2*1 1/2 | 0.75 | 955 | 2.9 | 11 | 830 | 1100 | 1250 | 0.878 | 21 | 465 | 616 | 700 |
1/2*2 | 1 | 1270 | 3.86 | 8.23 | 1000 | 1350 | 1550 | 1.17 | 15 | 560 | 756 | 868 |
1/2*2 1/2 | 1.25 | 1590 | 4.83 | 6.58 | 1200 | 1600 | 1850 | 1.463 | 12 | 672 | 896 | 1036 |
1/2*3 | 1.5 | 1910 | 5.8 | 5.49 | 1400 | 1850 | 2150 | 1.755 | 10 | 784 | 1036 | 1204 |
1/2*3 1/2 | 1.75 | 2230 | 6.76 | 4.7 | 1550 | 2100 | 2400 | 2.048 | 9 | 868 | 1176 | 1344 |
1/2*4 | 2 | 2550 | 7.73 | 4.11 | 1700 | 2300 | 2650 | 2.34 | 8 | 952 | 1288 | 1484 |
1/2*5 | 2.5 | 3180 | 9.66 | 3.29 | 2050 | 2750 | 3150 | 2.925 | 6 | 1148 | 1540 | 1764 |
1/2*6 | 3 | 3820 | 11.6 | 2.74 | 2400 | 3150 | 3650 | 3.51 | 5 | 1344 | 1764 | 2044 |
1/2*8 | 4 | 5090 | 15.5 | 2.06 | 3000 | 4000 | 4600 | 4.68 | 4 | 1680 | 2240 | 2576 |
1/4*1/2 | 0.125 | 159 | 0.483 | 65.8 | 240 | 315 | 360 | 0.146 | 123 | 134 | 176 | 202 |
1/4*3/4 | 0.188 | 239 | 0.726 | 43.8 | 320 | 425 | 490 | 0.220 | 82 | 179 | 238 | 274 |
1/4*1 | 0.25 | 318 | 0.966 | 32.9 | 400 | 530 | 620 | 0.293 | 62 | 224 | 297 | 347 |
1/4*1 1/2 | 0.375 | 477 | 1.450 | 21.9 | 560 | 740 | 880 | 0.439 | 41 | 314 | 414 | 482 |
1/4*2 | 0.5 | 637 | 1.930 | 16.5 | 710 | 940 | 1100 | 0.585 | 31 | 398 | 526 | 616 |
1/4*2 1/2 | 0.625 | 796 | 2.410 | 13.2 | 850 | 1150 | 1300 | 0.731 | 25 | 476 | 644 | 728 |
1/4*3 | 0.75 | 955 | 2.900 | 11 | 990 | 1300 | 1550 | 0.878 | 21 | 554 | 728 | 868 |
1/4*3 1/2 | 0.875 | 1110 | 3.380 | 9.4 | 1150 | 1500 | 1750 | 1.024 | 18 | 644 | 840 | 980 |
1/4*4 | 1 | 1270 | 3.860 | 8.23 | 1250 | 1700 | 1950 | 1.170 | 15 | 700 | 952 | 1092 |
1/4*5 | 1.25 | 1590 | 4.830 | 6.58 | 1500 | 2000 | 2350 | 1.463 | 12 | 840 | 1120 | 1316 |
1/4*6 | 1.5 | 1910 | 5.800 | 5.49 | 1750 | 2350 | 2700 | 1.755 | 10 | 980 | 1316 | 1512 |
1/8*1/2 | 0.0625 | 79.6 | 0.241 | 132 | 153 | 205 | 235 | 0.073 | 247 | 86 | 115 | 132 |
1/8*3/4 | 0.0938 | 119 | 0.362 | 87.7 | 215 | 285 | 325 | 0.110 | 164 | 120 | 160 | 182 |
1/8*1 | 0.125 | 159 | 0.483 | 65.8 | 270 | 360 | 415 | 0.146 | 123 | 151 | 202 | 232 |
1/8*1 1/2 | 0.188 | 239 | 0.726 | 43.8 | 385 | 510 | 590 | 0.220 | 82 | 216 | 286 | 330 |
1/8*2 | 0.25 | 318 | 0.966 | 32.9 | 495 | 660 | 760 | 0.293 | 62 | 277 | 370 | 426 |
1/8*2 1/2 | 0.312 | 397 | 1.210 | 26.4 | 600 | 800 | 920 | 0.365 | 49 | 336 | 448 | 515 |
1/8*3 | 0.375 | 477 | 1.450 | 21.9 | 710 | 940 | 1100 | 0.439 | 41 | 398 | 526 | 616 |
1/8*3 1/2 | 0.438 | 558 | 1.690 | 18.8 | 810 | 1100 | 1250 | 0.512 | 35 | 454 | 616 | 700 |
1/8*4 | 0.5 | 636 | 1.930 | 16.5 | 900 | 1200 | 1400 | 0.585 | 31 | 504 | 672 | 784 |
1/16*1/2 | 0.0312 | 39.7 | 0.121 | 264 | 103 | 136 | 157 | 0.037 | 494 | 58 | 76 | 88 |
1/16*3/4 | 0.0469 | 59.7 | 0.181 | 175 | 145 | 193 | 225 | 0.055 | 327 | 81 | 108 | 126 |
1/16*1 | 0.0625 | 79.6 | 0.242 | 132 | 187 | 250 | 285 | 0.073 | 247 | 105 | 140 | 160 |
1/16*1 1/2 | 0.0938 | 119 | 0.362 | 87.7 | 270 | 355 | 410 | 0.110 | 164 | 151 | 199 | 230 |
1/16*2 | 0.125 | 159 | 0.483 | 65.8 | 345 | 460 | 530 | 0.146 | 123 | 193 | 258 | 297 |
Source: Copper Development Organization; Aluminum Association | ||||||||||||
Note: Ratings depend upon configuration, air flow, ambient temp, etc. The values depicted are an approximation. Controlled testing is always required to validate. | ||||||||||||
Other considerations Forming the busbar (aluminum has a tendency to crack with very tight radius) Electroplating the busbar (white rust on aluminum, oxidation is an issue with aluminum) Configuration of the busbar (vertical or horizontal configuration) |